Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SNPeffect: identifying functional roles of SNPs using metabolic networks.

Identifieur interne : 000137 ( Main/Exploration ); précédent : 000136; suivant : 000138

SNPeffect: identifying functional roles of SNPs using metabolic networks.

Auteurs : Debolina Sarkar [États-Unis] ; Costas D. Maranas [États-Unis]

Source :

RBID : pubmed:32167625

Abstract

Genetic sources of phenotypic variation have been a focus of plant studies aimed at improving agricultural yield and understanding adaptive processes. Genome-wide association studies identify the genetic background behind a trait by examining associations between phenotypes and single-nucleotide polymorphisms (SNPs). Although such studies are common, biological interpretation of the results remains a challenge; especially due to the confounding nature of population structure and the systematic biases thus introduced. Here, we propose a complementary analysis (SNPeffect) that offers putative genotype-to-phenotype mechanistic interpretations by integrating biochemical knowledge encoded in metabolic models. SNPeffect is used to explain differential growth rate and metabolite accumulation in A. thaliana and P. trichocarpa accessions as the outcome of SNPs in enzyme-coding genes. To this end, we also constructed a genome-scale metabolic model for Populus trichocarpa, the first for a perennial woody tree. As expected, our results indicate that growth is a complex polygenic trait governed by carbon and energy partitioning. The predicted set of functional SNPs in both species are associated with experimentally characterized growth-determining genes and also suggest putative ones. Functional SNPs were found in pathways such as amino acid metabolism, nucleotide biosynthesis, and cellulose and lignin biosynthesis, in line with breeding strategies that target pathways governing carbon and energy partition.

DOI: 10.1111/tpj.14746
PubMed: 32167625


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SNPeffect: identifying functional roles of SNPs using metabolic networks.</title>
<author>
<name sortKey="Sarkar, Debolina" sort="Sarkar, Debolina" uniqKey="Sarkar D" first="Debolina" last="Sarkar">Debolina Sarkar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Maranas, Costas D" sort="Maranas, Costas D" uniqKey="Maranas C" first="Costas D" last="Maranas">Costas D. Maranas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32167625</idno>
<idno type="pmid">32167625</idno>
<idno type="doi">10.1111/tpj.14746</idno>
<idno type="wicri:Area/Main/Corpus">000397</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000397</idno>
<idno type="wicri:Area/Main/Curation">000397</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000397</idno>
<idno type="wicri:Area/Main/Exploration">000397</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SNPeffect: identifying functional roles of SNPs using metabolic networks.</title>
<author>
<name sortKey="Sarkar, Debolina" sort="Sarkar, Debolina" uniqKey="Sarkar D" first="Debolina" last="Sarkar">Debolina Sarkar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Maranas, Costas D" sort="Maranas, Costas D" uniqKey="Maranas C" first="Costas D" last="Maranas">Costas D. Maranas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genetic sources of phenotypic variation have been a focus of plant studies aimed at improving agricultural yield and understanding adaptive processes. Genome-wide association studies identify the genetic background behind a trait by examining associations between phenotypes and single-nucleotide polymorphisms (SNPs). Although such studies are common, biological interpretation of the results remains a challenge; especially due to the confounding nature of population structure and the systematic biases thus introduced. Here, we propose a complementary analysis (SNPeffect) that offers putative genotype-to-phenotype mechanistic interpretations by integrating biochemical knowledge encoded in metabolic models. SNPeffect is used to explain differential growth rate and metabolite accumulation in A. thaliana and P. trichocarpa accessions as the outcome of SNPs in enzyme-coding genes. To this end, we also constructed a genome-scale metabolic model for Populus trichocarpa, the first for a perennial woody tree. As expected, our results indicate that growth is a complex polygenic trait governed by carbon and energy partitioning. The predicted set of functional SNPs in both species are associated with experimentally characterized growth-determining genes and also suggest putative ones. Functional SNPs were found in pathways such as amino acid metabolism, nucleotide biosynthesis, and cellulose and lignin biosynthesis, in line with breeding strategies that target pathways governing carbon and energy partition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32167625</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>SNPeffect: identifying functional roles of SNPs using metabolic networks.</ArticleTitle>
<Pagination>
<MedlinePgn>512-531</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14746</ELocationID>
<Abstract>
<AbstractText>Genetic sources of phenotypic variation have been a focus of plant studies aimed at improving agricultural yield and understanding adaptive processes. Genome-wide association studies identify the genetic background behind a trait by examining associations between phenotypes and single-nucleotide polymorphisms (SNPs). Although such studies are common, biological interpretation of the results remains a challenge; especially due to the confounding nature of population structure and the systematic biases thus introduced. Here, we propose a complementary analysis (SNPeffect) that offers putative genotype-to-phenotype mechanistic interpretations by integrating biochemical knowledge encoded in metabolic models. SNPeffect is used to explain differential growth rate and metabolite accumulation in A. thaliana and P. trichocarpa accessions as the outcome of SNPs in enzyme-coding genes. To this end, we also constructed a genome-scale metabolic model for Populus trichocarpa, the first for a perennial woody tree. As expected, our results indicate that growth is a complex polygenic trait governed by carbon and energy partitioning. The predicted set of functional SNPs in both species are associated with experimentally characterized growth-determining genes and also suggest putative ones. Functional SNPs were found in pathways such as amino acid metabolism, nucleotide biosynthesis, and cellulose and lignin biosynthesis, in line with breeding strategies that target pathways governing carbon and energy partition.</AbstractText>
<CopyrightInformation>© 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sarkar</LastName>
<ForeName>Debolina</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-4976-5536</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maranas</LastName>
<ForeName>Costas D</ForeName>
<Initials>CD</Initials>
<Identifier Source="ORCID">0000-0002-1508-1398</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arabidopsis</Keyword>
<Keyword MajorTopicYN="Y">SNPs</Keyword>
<Keyword MajorTopicYN="Y">complementary GWAS</Keyword>
<Keyword MajorTopicYN="Y">flux balance analysis</Keyword>
<Keyword MajorTopicYN="Y">metabolic networks</Keyword>
<Keyword MajorTopicYN="Y">plant metabolic modeling</Keyword>
<Keyword MajorTopicYN="Y">poplar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32167625</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14746</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Alonso-Blanco, C., Andrade, J., Becker, C. et al. (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell, 166(2), 481-491.</Citation>
</Reference>
<Reference>
<Citation>Atwell, S., Huang, Y.U.S, Bjarni, J. et al. (2010) Genome-wide association study of 107 Phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627-631.</Citation>
</Reference>
<Reference>
<Citation>Bauer, C.R., Li, S. and Siegal, M.L. (2015) Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness. Mol. Syst. Biol. 11, 773.</Citation>
</Reference>
<Reference>
<Citation>Beckers, V., Dersch, L., Lotz, K., Melzer, G., Bläsing, O., Fuchs, R., Ehrhardt, T. and Wittmann, C. (2016) In silico metabolic network analysis of Arabidopsis leaves. BMC Syst. Biol. 10, 102.</Citation>
</Reference>
<Reference>
<Citation>Berg, M., Rogers, R., Muralla, R. and Meinke, D. (2005) Requirement of Aminoacyl-TRNA Synthetases for Gametogenesis and Embryo Development in Arabidopsis. Plant J. 44, 866-878.</Citation>
</Reference>
<Reference>
<Citation>BESC, BioEnergy Science Center. (2017) ‘GWAS Dataset.’ https://bioenergycenter.org/besc/gwas//</Citation>
</Reference>
<Reference>
<Citation>Besson, V., Neuuburger, M., Rebeille, F. and Douce, R. (1995) EVIDENCE for 3 serine hydroxymethyltransferases in green leaf-cells - Purification and characterization of the mitochondrial and chloroplastic isoforms. Plant Physiol. Biochem. 33, 665-673.</Citation>
</Reference>
<Reference>
<Citation>Bhatnager, R., Dang, A.S. (2018) Comprehensive in-silico prediction of damage associated SNPs in Human Prolidase gene. Sci. Rep. 8, 1-14.</Citation>
</Reference>
<Reference>
<Citation>Bick, J.A., Lange, B.M. (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415, 146-154.</Citation>
</Reference>
<Reference>
<Citation>Biscarini, F., Cozzi, P., Casella, L. et al. (2016) Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS ONE, 11, e0155425.</Citation>
</Reference>
<Reference>
<Citation>Blazquez, M.A., Santos, E., Flores, C.L., Martínez-Zapater, J.M., Salinas, J. and Gancedo, C. (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J. 13. 685-689.</Citation>
</Reference>
<Reference>
<Citation>Boone, C., Bussey, H. and Andrews, B.J. (2007) Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437-449.</Citation>
</Reference>
<Reference>
<Citation>Brodie, A., Azaria, J.R. and Ofran, Y. (2016) How far from the SNP may the causative genes be? Nucleic Acids Res. 44, 6046-6054.</Citation>
</Reference>
<Reference>
<Citation>Chan, S.H., Cai, J., Wang, L., Simons-Senftle, M.N. and Maranas, C.D. (2017) Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models. Bioinformatics 33, 3603-3609.</Citation>
</Reference>
<Reference>
<Citation>Chanoca, A., de Vries, L. and Boerjan, W. (2019) Lignin engineering in forest trees. Front. Plant Sci. 10, 912.</Citation>
</Reference>
<Reference>
<Citation>Chao, D.-Y., Chen, Y., Chen, J. et al. (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol. 12, e1002009</Citation>
</Reference>
<Reference>
<Citation>Cheung, C.M., Williams, T.C., Poolman, M.G., Fell, D.A., Ratcliffe, R.G. and Sweetlove, L.J. (2013) A Method for Accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J. 75, 1050-1051.</Citation>
</Reference>
<Reference>
<Citation>Chhetri, H.B., Macaya-Sanz, D., Kainer, D. et al. (2019) Multi-trait genome-wide association analysis of populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytol. 23, 293-309.</Citation>
</Reference>
<Reference>
<Citation>Chowdhury, R, Chowdhury, A. and Maranas, C. (2015) Using gene essentiality and synthetic lethality information to correct yeast and CHO cell genome-scale models. Metabolites 5, 536-570.</Citation>
</Reference>
<Reference>
<Citation>Clark, A.G. and Wang, L. (1997) Epistasis in measured genotypes: drosophila P-element insertions. Genetics. 47, 157-163.</Citation>
</Reference>
<Reference>
<Citation>Clifton, B.E., Kaczmarski, J.A., Carr, P.D., Gerth, M.L., Tokuriki, N. and Jackson, C.J. (2018) Evolution of Cyclohexadienyl Dehydratase from an Ancestral Solute-Binding Protein Article. Nat. Chem. Biol. 14, 542-547.</Citation>
</Reference>
<Reference>
<Citation>Colombo, I., Finocchlaro, G., Garavaglia, B., Garbugllo, N., Yamaguchl, S., Frerman, F., Berra, B. and DiDonato, S. (1994) Mutations and polymorphisms of the gene encoding the β-subunit of the electron transfer flavoprotein in three patients with glutaric acidemia type II. Hum. Mol. Genet., 3, 429-435.</Citation>
</Reference>
<Reference>
<Citation>Cookson, S.J., Chenu, K. and Granier, C. (2007) Day length affects the dynamics of leaf expansion and cellular development in Arabidopsis thaliana partially through floral transition timing. Ann. Bot. 99, 703-711.</Citation>
</Reference>
<Reference>
<Citation>Corea, O., Ki, C., Cardenas, C., Kim, S., Brewer, S., Patten, A., Davin, L. and Lewis, N. (2012) Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins. J. Biol. Chem. 287, 11446-11459.</Citation>
</Reference>
<Reference>
<Citation>Dejardin, A., Sokolov, L.N. and Kleczkowski, L.A. (2015) Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344, 503-509.</Citation>
</Reference>
<Reference>
<Citation>Deutscher, D., Meilijson, I., Kupiec, M. and Ruppin, E. (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat. Genet. 38, 993-998.</Citation>
</Reference>
<Reference>
<Citation>Du, Q., Tian, J., Yang, X., Pan, W., Xu, B., Li, B., Ingvarsson, P.k and Zhang, D. (2015) Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa. DNA Res. 22, 53-67.</Citation>
</Reference>
<Reference>
<Citation>Elena, S.F. and Lenski, R.E. (1997) Test of synergistic interactions among deleterious mutations in bacteria. Nature, 390, 395-398.</Citation>
</Reference>
<Reference>
<Citation>Esaki, S., Malkaram, S.A. and Zempleni, J. (2012) Effects of single-nucleotide polymorphisms in the human holocarboxylase synthetase gene on enzyme catalysis. Eur. J. Hum. Genet. 20, 428-433.</Citation>
</Reference>
<Reference>
<Citation>Evans, L.M., Slavov, G.T., Rodgers-Melnick, E. et al. (2014) Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat. Genet. 46, 1089-1096.</Citation>
</Reference>
<Reference>
<Citation>Evnouchidou, I., Kamal, R.P., Seregin, S.S. et al. (2011) Cutting edge: coding single nucleotide polymorphisms of endoplasmic reticulum aminopeptidase 1 can affect antigenic peptide generation in vitro by influencing basic enzymatic properties of the enzyme. J. Immunol. 186, 1909-1913.</Citation>
</Reference>
<Reference>
<Citation>Ferrari, R., Lovering, R.C., Hardy, J., Lewis, P.A. and Manzoni, C. (2017) Weighted protein interaction network analysis of frontotemporal dementia. J. Proteome Res. 16, 999-1013.</Citation>
</Reference>
<Reference>
<Citation>Forsum, O., Svennerstam, H., Ganeteg, U. and Näsholm, T. (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol. 179, 1058-1069.</Citation>
</Reference>
<Reference>
<Citation>Fung, H.C., Scholz, S., Matarin, M. et al. (2006) genome-wide genotyping in Parkinson’s disease and neurologically. Normal controls: first stage analysis and public release of data. Lancet Neurol. 5, 911-916.</Citation>
</Reference>
<Reference>
<Citation>Galili, G. (2002) New insights into the regulation and functional significance of lysine metabolism in plants. Annu. Rev. Plant Biol. 53, 27-43.</Citation>
</Reference>
<Reference>
<Citation>Geigenberger, P., Regierer, B., Nunes-Nesi, A., Leisse, A., Urbanczyk-Wochniak, E., Springer, F., van Dongen, J.T., Kossmann, J. and Fernie, A.R. (2005) Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell, 17, 2077-2088.</Citation>
</Reference>
<Reference>
<Citation>Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135-145.</Citation>
</Reference>
<Reference>
<Citation>Goddijn, O.J., Verwoerd, T.C. and Voogd, E. (2002) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol. 113, 181-190.</Citation>
</Reference>
<Reference>
<Citation>Gong, C., Du, Q., Xie, J., Quan, M., Chen, B. and Zhang, D. (2018) Dissection of insertion-deletion variants within differentially expressed genes involved in wood formation in populus. Front. Plant Sci. 8, 2199.</Citation>
</Reference>
<Reference>
<Citation>Grafahrend-Belau, E., Schreiber, F., Koschützki, D. and Junker, B.H. (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol. 149: 585-598.</Citation>
</Reference>
<Reference>
<Citation>Guinot, F., Szafranski, M., Ambroise, C. and Samson, F. (2018) Learning the optimal scale for GWAS through hierarchical SNP aggregation. BMC Bioinformatics, 19, 459.</Citation>
</Reference>
<Reference>
<Citation>Guo, Q., Yoshida, Y., Major, I.T. et al. (2018) JAZ Repressors of Metabolic Defense Promote Growth and Reproductive Fitness in Arabidopsis. Proc. Nati. Acad. Sci. 115, E10768-E10777.</Citation>
</Reference>
<Reference>
<Citation>de la Luz Gutiérrez-Nava, M. (2004) CHLOROPLAST BIOGENESIS Genes Act Cell and Noncell Autonomously in Early Chloroplast Development. PLANT PHYSIOLOGY.</Citation>
</Reference>
<Reference>
<Citation>Hamblin, M.T. and Jannink, J.-L. (2011) Factors affecting the power of haplotype markers in association studies. Plant Genome J. 4, 145-153.</Citation>
</Reference>
<Reference>
<Citation>Harris, G.C. and Königer, M. (1997) The ‘high’ concentrations of enzymes within the chloroplast. Photosynth. Res. 54, 5-23.</Citation>
</Reference>
<Reference>
<Citation>Harrison, R., Papp, B., Pal, C., Oliver, S.G. and Delneri, D. (2007) Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl Acad. Sci. 104, 2307-2312.</Citation>
</Reference>
<Reference>
<Citation>He, X., Qian, W., Wang, Z., Li, Y. and Zhang, J. (2010) Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nature Genet. 42, 272-276.</Citation>
</Reference>
<Reference>
<Citation>He, Y., Cheng, J., He, Y., Yang, B., Cheng, Y., Yang, C., Zhang, H. and Wang, Z. (2019) Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnol. J. 17, 322-337.</Citation>
</Reference>
<Reference>
<Citation>Hedstrom, L. (2009) IMP dehydrogenase: structure, mechanism, and inhibition. Chem. Rev. 109, 2903-2928.</Citation>
</Reference>
<Reference>
<Citation>Hemmerlin, A. and Bach, T.J. (1998) Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 Cells. Plant J. 14, 65-74.</Citation>
</Reference>
<Reference>
<Citation>Hemmerlin, A., Hoeffler, J.-F., Meyer, O., Tritsch, D., Kagan, I.A., Grosdemange-Billiard, C., Rohmer, M. and Bach, T.J. (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chemist, 278, 26666-26676.</Citation>
</Reference>
<Reference>
<Citation>Ibarra, R.U., Edwards, J.S. and Palsson, B.O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 420, 186-189.</Citation>
</Reference>
<Reference>
<Citation>Jansen, R.C. and Stam, P. (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 136, 1447-1455.</Citation>
</Reference>
<Reference>
<Citation>Kelley, R. and Ideker, T. (2005) Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561-566.</Citation>
</Reference>
<Reference>
<Citation>Koehler, L and Telewski, F.W. (2006) Biomechanics and transgenic wood. Am. J. Bot. 93, 1433-1438.</Citation>
</Reference>
<Reference>
<Citation>Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W. and Peeters, T. (1994) The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J. 6, 911-919.</Citation>
</Reference>
<Reference>
<Citation>Lakshmanan, M., Zhang, Z., Mohanty, B. et al. (2013) Elucidating rice cell metabolism under flooding and drought stresses using flux-based modeling and analysis. Plant Physiol. 162, 2140-2150.</Citation>
</Reference>
<Reference>
<Citation>. Lango, H.A., Estrada, K., Lettre, G. et al. (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 467, 832-838.</Citation>
</Reference>
<Reference>
<Citation>Lee, P.H. and Shatkay, H. (2007) F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res. 36, D820-D824.</Citation>
</Reference>
<Reference>
<Citation>Lee, I., Blom, U.M., Wang, P.I., Shim, J.E. and Marcotte, E.M. (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 21, 1109-1121.</Citation>
</Reference>
<Reference>
<Citation>Leiserson, M.D.M., Eldridge, J.V., Ramachandran, S. and Raphael, B.J. (2013) Network analysis of GWAS data. Curr. Opin. Genet. Dev. 23, 602-610.</Citation>
</Reference>
<Reference>
<Citation>Lewis, N.E., Hixson, K.K., Conrad, T.M. et al. (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Systems Biol. 6, 390.</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Huang, Y., Bergelson, J., Nordborg, M. and Borevitz, J.O. (2010) Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Nati Acad Sci. 107, 21199-21204.</Citation>
</Reference>
<Reference>
<Citation>Liechti, G. and Goldberg, J.B. (2012) Helicobacter pylori relies primarily on the purine salvage pathway for purine nucleotide biosynthesis. J. Bacteriol. 194, 839-854.</Citation>
</Reference>
<Reference>
<Citation>Liu, Y.-L., Chiang, Y.-H., Liu, G.-Y. and Hung, H.-C. (2011) Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PLoS ONE, 6, e21314.</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Brossard, M., Sarnowski, C. et al. (2017) Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma. Sci Rep. 7, 1-10.</Citation>
</Reference>
<Reference>
<Citation>Lloyd, J. and Meinke, D. (2012) A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis. Plant Physiol. 158, 1115-1129.</Citation>
</Reference>
<Reference>
<Citation>Locke, A.E., Kahali, B., Berndt, S.I. et al. (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature. 18, 197-206.</Citation>
</Reference>
<Reference>
<Citation>MacArthur, J., Bowler, E., Cerezo, M., et al. (2016) The new NHGRI-EBI Catalog of published genome--wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896-D901.</Citation>
</Reference>
<Reference>
<Citation>Machado, D. and Herrgård, M. (2014) Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism’ ed. Costas D. Maranas. PLoS Computat. Biol. 10, e1003580.</Citation>
</Reference>
<Reference>
<Citation>Maloof, J.N. (2003) QTL for plant growth and morphology. Curr. Opin. Plant Biol. 6, 85-90.</Citation>
</Reference>
<Reference>
<Citation>Maraganore, D.M., de Andrade, M., Lesnick, T.G. et al. (2005) High-resolution whole-genome association study of Parkinson disease. Am. J. Human Genet. 77, 685-693.</Citation>
</Reference>
<Reference>
<Citation>Marchler-Bauer, A., Bo, Y., Han, L. et al. (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200-D203.</Citation>
</Reference>
<Reference>
<Citation>Marino, M.J., Valenti, O. and Conn, P.J. (2003) Glutamate receptors and Parkinson's Disease. Drugs Aging, 20, 377-397.</Citation>
</Reference>
<Reference>
<Citation>Masakapalli, S.K., Le Lay, P., Huddleston, J.E., Pollock, N.L., Kruger, N.J. and Ratcliffe, R.G. (2010) Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis cell suspension using steady-state stable isotope labeling. Plant Physiol. 152, 602-619.</Citation>
</Reference>
<Reference>
<Citation>Mettler, T., Mühlhaus, T., Hemme, D. et al. (2014) Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism chlamydomonas reinhardtii. Plant Cell, 26, 2310-2350.</Citation>
</Reference>
<Reference>
<Citation>Michaels, S.D. (1999) FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell, 11, 949.</Citation>
</Reference>
<Reference>
<Citation>Mintz-Oron, S., Meir, S., Malitsky, S., Ruppin, E., Aharoni, A. and Shlomi, T. (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc. Nati. Acad. Sci. USA, 109, 339-344.</Citation>
</Reference>
<Reference>
<Citation>Mintz-Oron, S., Aharoni, A., Ruppin, E. and Shlomi, T. (2009) Network-Based Prediction of Metabolic Enzymes’ Subcellular Localization. Bioinformatics 25, i247-1252.</Citation>
</Reference>
<Reference>
<Citation>Moffatt, B.A. and Ashihara, H. (2002) Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book, 1, e0018.</Citation>
</Reference>
<Reference>
<Citation>Muchero, W., Guo, J., DiFazio, S.P. et al. (2015) High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genom. 16, 24.</Citation>
</Reference>
<Reference>
<Citation>Ni, W., Fahrendorf, T., Ballance, G.M., Lamb, C.J. and Dixon, R.A. (1996) Stress Responses in Alfalfa (Medicago Sativa L.). XX. Transcriptional Activation of Phenlpropanoid Pathway Genes in Elicitor-Induced Cell Suspension Cultures. Plant Mol. Biol. 30, 427-438.</Citation>
</Reference>
<Reference>
<Citation>Nielsen, R., Paul, J.S., Albrechtsen, A. and Song, Y.S. (2011) Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443-451.</Citation>
</Reference>
<Reference>
<Citation>Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H. and Sederoff, R. (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol, 154, 555-561.</Citation>
</Reference>
<Reference>
<Citation>Nurnberger, J.I., Koller, D. L., Jung, J. et al. (2014) Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry, 71, 657.</Citation>
</Reference>
<Reference>
<Citation>O’Brien, E.J., Monk, J.M. and Palsson, B.O. (2015) Using genome-scale models to predict biological capabilities. Cell. 161, 971-987.</Citation>
</Reference>
<Reference>
<Citation>Gomes de Oliveira Dal'Molin, C., Quek, L.E., Saa, P.A. and Nielsen, L.K. (2015) A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front. Plant Sci. 6, 4.</Citation>
</Reference>
<Reference>
<Citation>de Oliveira Dal’Molin, C.G., Quek, L.E., Palfreyman, R.W., Brumbley, S.M. and Nielsen, L.K. (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol. 154, 1871-85.</Citation>
</Reference>
<Reference>
<Citation>de Oliveira Dal'Molin, C.G., Quek, L.-E., Palfreyman, R. W., Brumbley, S. M. and Nielsen, L. K. (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol, 152, 579-589.</Citation>
</Reference>
<Reference>
<Citation>Orth, J.D., Thiele, I. and Palsson, B.Ø. (2010) What is flux balance analysis? Nat. Biotechnol. 28, 245-248.</Citation>
</Reference>
<Reference>
<Citation>Papp, B., Pál, C. and Hurst, L.D. (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature, 429, 661-664.</Citation>
</Reference>
<Reference>
<Citation>Pardo, E.G. and Gutiérrez, C. (1990) Cell cycle- and differentiation stage-dependent variation of DUTPase activity in higher plant cells. Exp. Cell Res. 186, 90-98.</Citation>
</Reference>
<Reference>
<Citation>Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E. and Tanksley, S.D. (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335, 721-726.</Citation>
</Reference>
<Reference>
<Citation>Peng, X.-P., Sun, S.-L., Wen, J.-L., Yin, W.-L. and Sun, R.-C. (2014) Structural characterization of lignins from hydroxycinnamoyl transferase (HCT) down-regulated transgenic poplars. Fuel, 134, 485-492.</Citation>
</Reference>
<Reference>
<Citation>Phillips, P.C. (2008) Epistasis - The essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855-867.</Citation>
</Reference>
<Reference>
<Citation>Poolman, M.G., Miguet, L., Sweetlove, L.J. and Fell, D.A. (2009) A genome-scale metabolic model of arabidopsis and some of its properties. Plant Physiol. 151, 1570-1581.</Citation>
</Reference>
<Reference>
<Citation>Prasad, K.V.S.K., Song, B.-H., Olson-Manning, C. et al. (2012) A gain-of-function polymorphism controlling complex traits and fitness in nature. Science, 337, 1081-1084.</Citation>
</Reference>
<Reference>
<Citation>Quan, M., Du, Q., Xiao, L., Lu, W., Wang, L., Xie, J., Song, Y., Xu, B. and Zhang, D. (2018) Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus. Plant Biotechnol. J. 17, 302-315.</Citation>
</Reference>
<Reference>
<Citation>Richard, P., Charron, P., Carrier, L. et al. (2003) Hypertrophic Cardiomyopathy: Distribution of Disease Genes, Spectrum of Mutations, and Implications for a Molecular Diagnosis Strategy. Circulation, 107(17), 2227-2232.</Citation>
</Reference>
<Reference>
<Citation>Ruan, Y.-L. (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell, 15, 952-964.</Citation>
</Reference>
<Reference>
<Citation>Rueda-López, M., Pascual, M.B., Pallero, M., Henao, L.M., Lasa, B., Jauregui, I., Aparicio-Tejo, P.M., Cánovas, F.M. and Ávila, C. (2017) Overexpression of a pine Dof transcription factor in hybrid poplars: a comparative study in trees growing under controlled and natural conditions. PLoS ONE, 12, e0174748.</Citation>
</Reference>
<Reference>
<Citation>Saha, R., Suthers, P.F. and Maranas, C.D. (2011) Zea Mays IRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism’ ed. Mikael Rørdam Andersen. PLoS ONE, 6, e21784.</Citation>
</Reference>
<Reference>
<Citation>Sajitz-Hermstein, M., Töpfer, N., Kleessen, S., Fernie, A.R. and Nikoloski, Z. (2016) iReMet-flux: constraint-based approach for integrating relative metabolite levels into a stoichiometric metabolic models. Bioinformatics, 32, i755-i762.</Citation>
</Reference>
<Reference>
<Citation>Sarrobert, C., Thibaud, M.-C., Contard-David, P., Gineste, S., Bechtold, N., Robaglia, C. and Nussaume, L. (2000) Identification of an Arabidopsis thaliana mutant accumulating threonine resulting from mutation in a new dihydrodipicolinate synthase gene. Plant J. 24, 357-368.</Citation>
</Reference>
<Reference>
<Citation>Satish Kumar, V., Dasika, M.S. and Maranas, C.D. (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics, 8, 212.</Citation>
</Reference>
<Reference>
<Citation>Savage, L.J., Imre, K.M., Hall, D.A. and Last, R.L. (2013) Analysis of essential arabidopsis nuclear genes encoding plastid-targeted proteins. PLoS ONE, 8, e7329.</Citation>
</Reference>
<Reference>
<Citation>Schröder, M. (2005) Functional analysis of the pyrimidine de novo synthesis pathway in solanaceous species. Plant Physiol. 138, 1926-1938.</Citation>
</Reference>
<Reference>
<Citation>Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M. and Sauer, U. (2012) Multidimensional optimality of microbial metabolism. Science, 336, 601-604.</Citation>
</Reference>
<Reference>
<Citation>Scuteri, A., Sanna, S., Chen, W.-M. et al. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115.</Citation>
</Reference>
<Reference>
<Citation>Segrè, D., DeLuna, A., Church, G.M. and Kishony, R. (2005) Modular epistasis in yeast metabolism. Nat. Genet. 37, 77-83.</Citation>
</Reference>
<Reference>
<Citation>Sharma, A., Kitsak, M., Cho, M.H. et al. (2018) Integration of molecular interactome and targeted interaction analysis to identify a COPD disease network module. Sci. Rep. 8, 1-14.</Citation>
</Reference>
<Reference>
<Citation>Simons, M., Saha, R., Amiour, N. et al. (2014) Assessing the metabolic impact of nitrogen availability using a compartmentalized maize leaf genome-scale model. Plant Physiol. 166, 1659-1674.</Citation>
</Reference>
<Reference>
<Citation>Soltis, N.E. and Kliebenstein, D.J. (2015) Natural variation of plant metabolism: genetic mechanisms, interpretive caveats, evolutionary and mechanistic insights. Plant Physiol. 169(3), 1456-1468.</Citation>
</Reference>
<Reference>
<Citation>Sun, J., Loboda, T., Sung, S.J.S. and Black, C.C. (1992) Sucrose synthase in wild tomato, lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol. 8, 1163-1169.</Citation>
</Reference>
<Reference>
<Citation>Sweetlove, L.J., Williams, T.C.R., Maurice Cheung, C.Y. and George Ratcliffe, R. (2013) Modelling metabolic CO2 evolution - a fresh perspective on respiration. Plant cell Environ. 36, 1631-1640.</Citation>
</Reference>
<Reference>
<Citation>Tian, J., Song, Y., Du, Q. et al. (2016) Population genomic analysis of gibberellin-responsive long non-coding RNAs in populus. J. Exp. Bot. 67, 2467-248</Citation>
</Reference>
<Reference>
<Citation>Togninalli, M., Seren, Ü., Meng, D. et al. (2018) The AraGWAS catalog: a curated and standardized Arabidopsis thaliana GWAS catalog. Nucleic Acids Res. 46, D1150-D1156.</Citation>
</Reference>
<Reference>
<Citation>Tohge, T., Watanabe, M., Hoefgen, R. and Fernie, A. R. (2013) The evolution of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol. Biol. 48, 123-152.</Citation>
</Reference>
<Reference>
<Citation>Tong, A.H.Y. et al. (2004) Global mapping of the yeast genetic interaction network. Science, 303, 808-813.</Citation>
</Reference>
<Reference>
<Citation>Torkamani, A., Topol, E.J. and Schork, N.J. (2008) Pathway analysis of seven common diseases assessed by genome-wide association. Genomics, 92, 265-272.</Citation>
</Reference>
<Reference>
<Citation>Tuskan, G.A., Difazio, S., Jansson, S. et al. (2006) The Genome of Black Cottonwood, Populus Trichocarpa (Torr. & Gray). Science. 313, 1596-1604.</Citation>
</Reference>
<Reference>
<Citation>Varma, A. and Palsson, B.O. (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technol. 12(10): 994-998.</Citation>
</Reference>
<Reference>
<Citation>Vauterin, M., Frankard, V. and Jacobs, M. (1999) The Arabidopsis thaliana dhdps gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner. Plant Mol. Biol. 39, 695-708.</Citation>
</Reference>
<Reference>
<Citation>Vogel, G., Aeschbacher, R.A., Müller, J., Boller, T. and Wiemken, A. (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J. 13, 673-683.</Citation>
</Reference>
<Reference>
<Citation>Wang, W.H., Takano, T., Shibata, D., Kitamura, K. and Takeda, G. (2006) Molecular basis of a null mutation in soybean lipoxygenase 2: substitution of glutamine for an iron-ligand histidine. Proc. Nati. Acad. Sci. 91, 5828-5832.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y., Bouwmeester, K., Beseh, P., Shan, W. and Govers, F. (2014a) Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple l-type lectin receptor kinases are involved in plant immunity. Molecular Plant-Microbe Interactions. 27, 1390-1402.</Citation>
</Reference>
<Reference>
<Citation>Wang, L., Matsushita, T., Madireddy, L., Mousavi, P. and Baranzini, S. (2014b) PINBPA: Cytoscape app for network analysis of GWAS data. Bioinformatics, 31, 262-264.</Citation>
</Reference>
<Reference>
<Citation>Wang, K., Li, M. and Bucan, M. (2007) Pathway-based approaches for analysis of genome-wide association studies. Am J Human Genet. 81: 1278-1283.</Citation>
</Reference>
<Reference>
<Citation>Wang, K., Li, M. and Hakonarson, H. (2010) Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843-854</Citation>
</Reference>
<Reference>
<Citation>Wei, Z., Qu, Z., Zhang, L., Zhao, S., Bi, Z., Ji, X., Wang, X. and Wei, H. (2015) Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height. PLoS ONE, 10, e0120669.</Citation>
</Reference>
<Reference>
<Citation>Wu, S., Tohge, T., Cuadros-Inostroza, Á. et al. (2018) Mapping the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Mol. Plant, 11, 118-134.</Citation>
</Reference>
<Reference>
<Citation>Xu, H.-H., Liu, S.-J., Song, S.-H., Wang, W.-Q., Møller, I. M. and Song, S.-Q. (2016) Proteome changes associated with dormancy release of dongxiang wild rice seeds. J. Plant Physiol. 206, 68-86</Citation>
</Reference>
<Reference>
<Citation>Xu, L., Barker, B. and Gu, Z. (2012) Dynamic epistasis for different alleles of the same gene. Proc. Nati. Acad. Sci. 109, 10420-10425.</Citation>
</Reference>
<Reference>
<Citation>Xu, Y., Chang, P.F.L., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M. and Bressan, R.A. (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell, 1077-1085</Citation>
</Reference>
<Reference>
<Citation>Yuan, H., Cheung, C.M., Poolman, M.G., Hilbers, P.A. and van Riel, N.A. (2016) A Genome-Scale Metabolic Network Reconstruction of Tomato (Solanum Lycopersicum L.) and Its Application to Photorespiratory Metabolism. Plant J. 85, 289-304.</Citation>
</Reference>
<Reference>
<Citation>Zeng, Z.B. (1994) Precision mapping of quantitative trait loci. Genetics, 36, 1457-1468</Citation>
</Reference>
<Reference>
<Citation>Zhang, J., Yang, Y., Zheng, K. et al. (2018a) Genome-Wide Association Studies and Expression-Based Quantitative Trait Loci Analyses Reveal Roles of HCT2 in Caffeoylquinic Acid Biosynthesis and Its Regulation by Defense-Responsive Transcription Factors in Populus. New Phytol. 220, 502-516.</Citation>
</Reference>
<Reference>
<Citation>Zhang, X., Misra, A., Nargund, S., Coleman, G.D. and Sriram, G. (2018b) Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply. Plant J. 93:472-488.</Citation>
</Reference>
<Reference>
<Citation>Zhang, J., Li, M., Bryan, A.C. et al. (2019) Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop: populus. Sustain Energ Fuels, 3, 195-207</Citation>
</Reference>
<Reference>
<Citation>Zhou, L., Jang, J.C., Jones, T.L. and Sheen, J. (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Nati. Acad. Sci. 95, 10294-10299</Citation>
</Reference>
<Reference>
<Citation>Zhou, X., Ren, S., Lu, M., Zhao, S., Chen, Z., Zhao, R. and Lv, J. (2018) Preliminary study of cell wall structure and its mechanical properties of C3H and HCT RNAi transgenic poplar sapling. Sci. Rep. 8(1), 1-10.</Citation>
</Reference>
<Reference>
<Citation>Zhu-Shimoni, J.X., Lev-Yadun, S., Matthews, B. and Galili, G. (1997) Expression of an aspartate kinase homoserine dehydrogenase gene is subject to specific spatial and temporal regulation in vegetative tissues, flowers, and developing seeds. Plant Physiol. 113, 695-706.</Citation>
</Reference>
<Reference>
<Citation>Zrenner, R., Salanoubat, M., Willmitzer, L. and Sonnewald, U. (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum Tuberosum L.). Plant J. 7, 97-107</Citation>
</Reference>
<Reference>
<Citation>Zrenner, R., Stitt, M., Sonnewald, U. and Boldt, R. (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu. Rev. Plant Biol. 57, 805-836.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Sarkar, Debolina" sort="Sarkar, Debolina" uniqKey="Sarkar D" first="Debolina" last="Sarkar">Debolina Sarkar</name>
</region>
<name sortKey="Maranas, Costas D" sort="Maranas, Costas D" uniqKey="Maranas C" first="Costas D" last="Maranas">Costas D. Maranas</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000137 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000137 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32167625
   |texte=   SNPeffect: identifying functional roles of SNPs using metabolic networks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32167625" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020